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ABSTRACT

This document is intended as an engineering guide for designing a modular simulator
(Mod Sim). It is provided in response to contract number F33657-86-C-0149, CDRL
1OOT. This guide addresses the definition, history and characteristics of a modular
simulator. Systems and Software Engineering activities are defined, and modular
simulator segment specific and networking design considerations are discussed. This
document discusses the Mod Sim program design goals and rationale, design rules and
guidelines, and lessons learned that have evolved through the program's demonstration
phase. The effective use of this guide, in conjunction with the modular simulator
architecture documents referenced herein can substantially reduce the cost, schedule,
and risk involved in developing a modular simulator.
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1. INTRODUCTION

1.1 Purpose. This document is an engineering reference guide for the specification,
design and development of modular simulator systems (MSSs). The guide should be
used in conjunction with the generic Modular Simulator (Mod Sim) System/Segment
Specifications (SSS) and the Modular Simulator System Management Guide.

1.2 Scope. This document identifies the design goals, rationale, rules, and guidelines
for an MSS. Where applicable, discussion concludes with lessons learned from the Mod
Sim development program. The guide is organized into sections addressing program
development, system and software engineering responsibilities, and relevant Mod Sim
design issues. The focus of this document is the unique considerations involved with
the design and development of a Mod Sim. Those considerations which are relevant to
simulators without regard to architecture are not discussed in this guide.

The target audience for this guide is the engineering sector. It contains detailed
engineering concepts and terminology. The reader is assumed to be knowledgeable in
the areas of systems and software engineering practices and principles as applicable to
design of aircrew training devices.

)
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2. REFERENCE DOCUMENTS

2.1 6 overnment Documents.

F33657-86-C-1 49 Modular Simulator Design Program Statement of Work

2.2 Non-Government Documents.

S495-10400 System/Segment Specification for the Generic Modular Simulator
System Volumes I through XIII

S495-10415 System/Segment Specification for the F-i 6C Modular Simulator
System Volumes I through XII

D495-10436-1 Modular Simulator System Hardware Requirements Document

D495-10437-1 Modular Simulator Design Program, Phase III, Part 2 Final Report

D495-10438-1 Follow On Effort Final Report for the Modular Simulator Design
Program

D495-10439-1 Modular Simulator System Management Guide

D495-10735-1 Modular Simulator System Interface Design Document

C $495-10734-1 Modular Simulator System Interface Requirements Specification
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3. MODULAR SIMULATOR CONCEPT

3.1 Mod Sim Program Background. The development of the Mod Sim architecture
began in December 1982. The purpose of this program was to develop and
demonstrate a modular design for flight simulators, using standard module functions
and communication interfaces. The goal of the program was to demonstrate a generic
simulator design, that would reduce future simulator development costs and schedules,
and improve simulator supportability. This was accomplished by subcontracting the
individual modules to specialists, by reusing existing software, and by providing parallel
development and test of the individual modules. The program consisted of three
phases, including a Request For Information, a Concept Development Study, and a
Concept DemonstrationNalidation.

During the first two phases, a conceptual modular simulator architecture was developed
and implementation planning was provided. This activity provided a clear indication
that the optimum Mod Sim architecture consisted of a distributed processing
environment of hardware and software modules connected to non-proprietary bus with
standard&:-'-d interfaces. Boeing proposed this concept to the United States Air Force
(USAF), and was selected to continue development in Phase three.

The third phase consisted of two parts, Design and Demonstration/Validation. Boeing,
Scientific Applications International Company (SAIC), Rediffusion Simulation Umited
(RSL), AAI and Intermetrics made up the design team, that created a generic set of
functional definitions. These definitions were based on past simulator interface
information, existing training device specifications, Technical Orders (TOs)/Flight

"( Manuals, Federal Aviation Administration (FAA) standards, and contractor experience.
A functional dictionary was built , which consisted of the definition and output data for
each function.

The Boeing Automated Module Interface Compiler (AMIC) tool was used to determine
the optimal allocation of functions to modules, and functional interfaces. As a function
was allocated to a module, the output data associated with the function formed the
definition of that module's functionality. An initial set of module specifications, consisting
of a system level volume plus one volume for each individual module, was generated
based on the module functional definitions.

A system performance model was constructed to evaluate alternative hardware
communication architectures, and a trade study was performed to determine the
architecture that would meet the requirements of real-time simulation.

Throughout the Part 1 design period, Interface Standard Working Group (ISWG)
meetings were conducted to evaluate the design effort of the program. These meetings
were held at regular intervals in order to involve industry in the development process.
The meetings were contractually required and involved approximately 150 companies
from the Flight Simulation industry. ISWG participants reviewed the evolving design,
offered constructive criticism in the form of action items. The ISWG brought an Industry
wide perspective to the Mod Sim program. The resulting architecture represents as
much of an Industry consensus as possible, given the diversity and breadth of ISWG

0
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participation. The Statement of Work designated the F-1 6C as the candidate aircraft for
demonstration of the Mod Sim architecture.

After the system level design was completed In Part 1, the Part 2 demonstration period
commenced with Boeing subcontracting eight of the eleven segments to AAI, SAIC, and
RSL to meet the requirement of 50%-75% sub-contracted effort. The goal of this period
was to demonstrate that the individual modules could be independently developed and
tested and subsequently integrated at the system level. For this effort, each module
was required to reside in a separate hardware chassis as a worst case implementation,
aimed at demonstrating the viability of the architecture. An individual VME chassis was
chosen for each of the 11 modules. These racks were populated with Motorola single
board computers and connected through Fiber Distributed Data Interface (FDDI). As a
part of the demonstration effort, Boeing Simulation & Training Systems (S&TS)
developed a stand-alone module test device, which was used to test each of the
modules prior to system level integration.

The F-1 6C Mod Sim was demonstrated and subsequently delivered to Williams AFB in
December 1990. Since then Boeing has accomplished follow-on work to further the
concepts developed during the program. An interoperability study was conducted to
provide the capability of connecting modular simulators to a Distributed Interactive
Simulation (DIS) environment for team training. This study resulted in the creation of a
twelfth segment, *Environment.' In addition, a tailoring guide has been developed to aid
in the application of the generic specifications to specific programs.

3.2 Modular Simulator Characteristics. A modular simulator has three types of
characteristics. These include characteristics that are fundamental to the architecture
and do not change across programs, some variable characteristics which afford
flexibility in design and implementation, and some general hardware characteristics
which are also optional. Figure 3.2-1 illustrates the twelve segment Mod Sim
architecture.

3.2.1 Fundamental Characteristics. Four fundamental characteristics are central to the
architecture of Modular Simulators.

a. Functional Segments. First, the simulator must be divided into functional
segments. (On the Mod Sim demonstrator program, these segments were called
modules) Segments are groups of functions or objects that closely related with
one another internally, and are loosely coupled to functions in other segments.
One measure of internal cohesion is data flow. Objects that pass data to one
another are obviously more cohesive than objects that do not share data.
Another measure of cohesion is execution order dependency. If one function
must always be executed before another, it may be necessary to allocate both
functions to the same segment with an explicit requirement to the segment
executive as to the order of execution. The allocation of functions to segments is
defined in a generic System Segment Specification (SSS). In most cases the
functional allocation defined in the generic SSS represent an optimum allocation
and should be adhered to if at all possible.

C0
D495-10440-1 12
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b. Inter Segment Interfaces. Interfaces in a Mod Sim are unique in that only the
( output requirements are defined in the Interface Requirements Specification

(IRS) along with the required destination(s). The interfaces may be derived from
the Mod Sim Interface Design Document (IDD), Appendix A, or may be defined
from other systems engineering analyses. Nevertheless, all inter segment
messages, back to the root types, must be defined.

Inter segment communication in a Mod Sim is accomplished by means of a
message based architecture, not a shared memory architecture. Segment
applications may not write into a shared memory area which is readable by other
segment applications. Communication within a segment may be implemented
using shared memory, but a segment application program sends and receives
messages.

The interfaces and message based communication methods described above
must be the only means that segments use to communicate with one another.
Segments should not communicate with other segments through a "back door"
interface unless an overriding requirement exists (back door interfaces are
discussed In Section 4). Just as functions have been decomposed and allocated
in the SSS, messages have been predefined in the IRS and can generally be
used as is. The IRS can be tailored, but the less tailoring, the better. Any such
tailoring should consider the implications of future reuse and compatibility with
existing reusable segments.

c. Timing. All timing requirements must be strictly specified in Appendix B of the
MSS IDD. The general assumption is that a message will be received no later
than the frame following transmission. There can be cases where the message
is required in the same frame. In this event, the sending segment must transmit
no later than a specified number of milliseconds into the frame and the receiving
segment cannot execute the dependent function prior to a specified number of
milliseconds into the frame.

d. Stand Alone Test. There must be a capability to test each segment as a
stand-alone system. A segment tester must be developed to simulate all of the
other segments in the system. It must supply the segment under test with all
synchronization messages (e.g., a clock tick message) and all mode and state
transition messages. It must also supply the segment under test with input data
and have the capability of collecting output data from the segment under test.
The test functions must be able to operate In real-time in order to test segment
requirements to compute responses within time limits. The segment tester must
allow the operator to generate input data files, and to display output data of the
segment under test.

e. Virtual Network. While the hardware and software implementations of the
communication architecture are optional, the requirement for a Virtual Network
(VNET) Is not. Every segment must appear to be communicating over a network.
The VNET is a concept that was developed, implemented and demonstrated on
the Mod Sim program and is a requirement for any Mod Sim.

0 D495-I 0440-1 14



3.2.2 Variable Characteristics. There are several characteristics within a Mod Sim that
have some degree of variability. They include the method of decomposition, the number
of segments within a given Mod Sim, type and number of computational systems, and
the VNET implementation.

a. Segment Decomposition. Decomposition refers to the allocation of functional
requirements to segments. For any simulator, decomposition is required.
However, the method of decomposition is optional. The Mod Sim program
employed a functional decomposition that resulted in twelve modules. Other
methods of requirements decomposition and allocation are available, such as
objects, systems, subsystems, etc. Regardless of the method used, the final step
is to allocate messages to the resulting segments.

b. Number of Segments. The composition and number of segments are not
fixed within a Mod Sim architecture. Unless a full fidelity weapon system trainer
is being developed, it is probable that one or more segments are not required in
most applications. it is possible to remove entire segments and still retain a Mod
Sim architecture. For example, a transport aircraft cockpit procedures trainer
Mod Sim may have no Visual, Electronic Warfare, or Weapon Systems
segments. Similarly, a lunar rover simulator may replace the Flight Dynamics
Segment with a Vehicle Dynamics Segment. It is also permissible to combine
two or more segments (Flight Controls and Flight Dynamics, for example) into
one module.

c. Computational Systems. The number of computational systems or CPUs is
not governed by the Mod Sim architecture, since Mod Sim is a software
architecture. It is possible to combine any number of, or all segments to run on
one system or one processor. The allocation of computational resources only as
required by various segments, is one of the strengths of the Mod Sim
architecture. In the Mod Sim demonstration program, each segment was
implemented as a separate, multiprocessor hardware module in order to test the
worst case of one computational system per segment.

d. Virtual Network Implementation. A physical network is not essential to Mod
Sim, but a virtual network (VNET) is. Segments may communicate with one
another over a back plane, or through common memory, or through any method
or combination of methods, so long as each segment application believes it is
sending and receiving messages over a network. On the Mod Sim program,
FDDI was tested and demonstrated to be a viable network media.

3.2.3 Hardware Characteristics. The Mod Sim architecture is not dependent on the
utilization of specific hardware. The implementation of each software segment into a
VME based computational system is only one of many possible hardware
configurations. The software segments may be combined into one or more VME
compatible computational systems, may be driven by a single mainframe processor, or
may be installed on another appropriate hardware configuration.

D495-10440-1 15



The hardware architecture chosen for each new Mod Sim project or applk:icon should
be the focus of program trade studies. In the rapidly changing world of computational
components, each new program should assess products in light of factors such as
availability, supportability, cost, performance, and compatibility with software interfaces.

3.3 Mod Sim Architecture Selection. The decision to select the Mod Sim architecture
for a simulator or family of simulators should be made during the conceptualization
phase of a program, as software, hardware and engineering reusability may significantly
impact the cost of the program. This design decision should determine if a Mod Sim
architecture is the most practical, and if it is, the specific implementation of the
architecture. It is recommended that software architecture trade studies be conducted
to determine the feasibility of utilizing the Mod Sim architecture, and the optimum
architecture to implement. Trade study factors should Include:

a. Cost. The cost of tailoring Mod Sim systems engineering products
(Specifications, SOW, Interface design, etc.) and software engineering products
must be weighed against alternative architectures. Intuitively, tailoring should
offer considerable savings over any approach Involving complete design
development.

b. Schedule. The schedule impact of tailoring Mod Sim products must be
considered. Not only is time saved in tailoring existing design and specification
products, but the parallel development of the individual segments can contribute
to schedule compression.

c. Subcontracting requirements. Designers of a program with significant
subcontracting requirements must consider how the trainer is subcontracted
when designing and testing the devices. The Mod Sim architecture lends itself
well to the logistics of a highly subcontracted development program.

d. Program Dynamics. A training system that is likely to experience a large
number of updates through the program life cycle also lends itself well to the Mod
Sim architecture, due to the stability of well defined interfaces and the loose
coupling between segments.

e. Software Reuse. The amount of software reuse between devices in a training
system family should be a consideration. For example, modular reuse between a
WST and CPT makes the Mod Sim architecture attractive. Reuse or modification
of existing software from other programs should also be considered.

3.4 Mod Sim Demonstrator Program (F-1 6C). The discussion that follows illustrate an
application of Mod Sim to a specific aircraft simulator. Though answers may change,
the process of trade studies and consideration gives some insight to the issues faced by
the application engineer. The Mod Sim demonstration program hardware architecture,
shown in Figure 3.4-1, implemented each software segment into a Versa Module
European (VME) computational system. This single segment per system architecture
was dictated by program requirements as the worst case (interface requirement). The
computational systems were selected as the result of program trade studies, and
linked through a fiber optic bus, known as the Fiber Distributed Data Interface (FDDI).

0 D495-1 0440-1 16
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3.4.1 F-16C Communication Architecture. The VME bus was chosen as the Internal
back plane for the Phase IlI, Part 2, F-i 6C MSS demonstrator modules to satisfy the
need for internal communication between the different processors and memory boards
of the individual modules for the following reasons:

a. VME Is a standard non-proprietary bus.

b. VME products are sold by over 100 vendors.

c. Cross compilers for the VME products are available from several vendors.

d. Advances In hardware and software appear earlier on VME formats than on
other bus architectures.

e. VME back plane speed has a sustained 80 megabits/second rate, which was
determined to be more than sufficient for the Individual modules.

f. Reasonable cost for required performance.

The processor board chosen for the Bus Interface Unit (BIU) was the MVME1 47, which
contains the Motorola MC68030 microprocessor and the MC68882 math ooprocessor.
The MC68030 microprocessor was selected over other microprocessors because of its
ability to execute instructions faster, interrupt latency was less, it was compatible With
mature ADA and C compilers and development tools, and the developer was familiar(7 with the product. The MVME147 Computer Processing Unit (CPU) board also offered
"the Advanced Micro Devices (AMD) Lance Ethernet chip and interface, up to four
megabytes of dual ported Random Access Memory (RAM), RS-232 ports, and supports
the VADS/Works operating system.

The VADS/Works operating system (OS) by Verdix and Wind River Systems was
chosen over Ready Systems and Motorola products for the Mod Sim F-16C
demonstration. This OS was chosen because it was already available and fully
functional, it closely resembled Unix, which was important because the Xpress Transfer
Protocol (XTP) was delivered in the Unix environment first, and it offered development
flexibility.

A trade study of alternative FDDI boards selected the Interphase board due to cost, and
satisfaction of technical requirements. Alternative products cost more due to dual ring
capabilities, on-board CPUs, and new product development costs. The simpler,
cheaper Interphase product adequately satisfied Mod Sim program needs.

3.4.2 F-1 6C Network Interface Hardware. The network interface developed during the
Mod Sim Program was the BIU. The BIU consists of a set of communication protocols
and data manipulation routines as shown in Figure 3.4.2-1. It is recommended that the
hardware chosen for the application BIU be compatible with the application processors.
For example, the BIU for each module in the Mod Sim consisted of a VME chassis and
power supply, an Interphase 3211 Falcon FDDI board, a Motorola MVME147 CPU
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board, and an MVME712 transition module. The transition module provided RS232
and Ethernet serial connections to the application software CPU. The Mod Sim BIU
hardware allocation is shown in Figure 3.4.2-2. Each of the modules was connected
through a fiber optic cable for real-time simulation, and via Ethernet for uploading and
downloading of simulation programs while simulation was not being performed.

Trade studies were conducted and a System Performance Model (SPM) was developed
during Phase Ill, Part 1, that determined the maximum allowable latency for the BIU is
550 microseconds. BIU latency is measured as the time that a BIU can take to receive
a message for transmission from the application, pack the message and pass it to the
FDDI, or to receive a packed message from the FDDI, place it in memory, and notify the
application that it is present.

On the Mod Sim device, which implemented or simulated message traffic for each of the
twelve modules individually, FDDI proved to be a more than adequate network media.
The speed of transmission met all requirements, and the timing of the transmission was
deterministic, unlike Ethernet, which is a collision detection protocol.
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4. SYSTEMS ENGINEERING ACTIVITIES

Systems Engineering activities consist of analyzing functional requirements and
translating them into performance requirements, defining system level interfaces, and
defining hardware and software requirements. Systems Engineering must analyze the
simulation system requirements, and perform trade studies to determine the optimal
software system architecture and hardware configuration to meet those requirements.
For the purpose of this section, it is assumed that the systems engineering process, that
yielded a Mod Sim software architecture as the solution, has been completed.

In accordance with MIL-STD-490, Systems Engineering is responsible for preparing and
submitting a System (Type A) Specification and Development (Type B) Specifications.
For a modular simulator program, this task consists of tailoring the Mod Sim Generic
System/Segment Specification, S495-10400, Volumes 1-13. Although each of the
volumes in the generic specification are formatted as Type A specifications in
accordance with DI CMAN-80008A, they provide excellent starting points for Type B
development specifications.

4.1 Requirements Analysis. Systems Engineering defines a base set of functional
requirements, often provided In a System Specification, defines associated system
performance requirements, and ultimately derives design requirements. When a Mod
Sim approach is selected, a superset of performance and design requirements already
exists in the generic SSS with tailoring instructions embedded therein. Systems
Engineering documents the requirements analysis by tailoring the SSS to the
application specific needs. This tailoring involves deletion of non-required functions,
possible modification of existing functions and the addition of potential new functions to
meet the specific needs of the aircraft being simulated. The existence of these
predefined requirements significantly reduces the systems engineering activity by
reducing the requirements analysis effort. In fact, both the system and segment level
requirements can be predominantly defined during the proposal preparation phase
rather than at preliminary design review.

Not only are the requirements defined early with respect to traditional simulator
programs, but even an earlier definition of interfaces is possible. Like the requirements
in the Generic SSS, Appendix A of the IDD contains a superset of interface
requirements which merely require tailoring to the specific application. Early definition of
interface requirements will contribute in a large measure to the success of subsequent
integration activities.

4.1.1 Required Segments. The first step in defining a Mod Sim is to determine which of
the traditional twelve segments are required. The required segments are determined by
several factors. The most significant factor is the air vehicle system complement and
associated capabilities. For instance, a device simulating a cargo aircraft would not
necessarily require an Electronic Warfare segment. An equally important factor is the
actual training capability required. A device used for training instrument procedures
would not necessarily require a Visual segment or a Physical Cues segment. As a
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minimum, a Mod Sim must have at least two segments, one of which Is a control
segment, and the other a simulation segment. This would be a radical tailoring of the
specification and would only be applicable to devices such as part task trainers.

4.1.2 Functional Requirements Allocation to Segments. The generic Mod Sim
System/Segment Specification (SSS) contains an allocation of functional requirements
to the twelve individual segments. This functional allocation was determined through a
rigorous analysis of design factors for air vehicle simulators. The basic concepts should
apply to any application. The criteria included coupling requirements, bus
traffic/interface requirements, vendor specialization, data/design criteria segmentation,
and Industry/Govemment preferences. This allocation is by no means inviolate, but
departures from it must be considered judiciously, as interfaces will invariably be
affected. There is a class of functions that have optional allocations. An example is
height above terrain. This function can be allocated to the Environment, Radar,
Navigation or Visual segments. A related trade study, discussed in Section 4.9, is
recommended to help determine the service function allocations. Another consideration
In functional allocation is the degree of coupling required between certain functions.
Loose coupling enhances integration, by minimizing inter segment dependencies, and
may enhance reusability of the segment.

4.1.3 Module/Segment Configuration Trade Study. A specific trade study required in
tailoring a Mod Sim application concerns the appropriate combining of segments into
modules. Segments may be combined for several reasons including contract work
share, media boundaries, latency requirements, hardware and associated costs, and
external interfaces, to name a few. For example, emerging visual systems often -
accommodate front end processors which host air vehicle flight simulation. Special care
must be exercised when combining segments as reusability can be affected.

Figure 4.1.3-1 is a sample Mod Sim in which the twelve segments were allocated
between three modules. The Simulator System module contains ten of the segments
(Figure 4.1.3-2), while the Flight Station and Visual System modules contain one each.
The factors that would most likely result in this configuration are contract work share and
the need to minimize hardware processor cost. It should be noted that the Simulator
System module could easily be separated by reallocating segments should future
upgrades require additional processing capacity.

4.1.4 Specification Tree. As soon as the module/segment configuration is defined a
specification tree should be developed. The tree provides a top level configuration of
the system, recognizable development boundaries and their associated interfaces, and
a road map for requirements development and completion. An example of a
specification tree for a program with a family of trainers is illustrated in Figure 4.1.4-1. In
this example, the propulsion, flight dynamics and navigation segments of two different
devices could be developed from identical specifications and therefore be reusable
between the two devices, while the visual segment specifications could be unique to
each device and would require separate specifications.

The specification tree in Figure 4.1.4-1 assigns a Type A System Specification at the
Training System level, whereas the generic SSS assumes a single training device type
Is the System. Consequently, the generic SSS may have to be dissected and the
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requirements apportioned to the various system levels as appropriate. If a common
architecture is imposed at the Training System level, then Volume I architecture
requirements would have to allocated to the System Specification. If for some reason
different architectures are selected for the Pilot Training System and Maintenance
Training System, then the SSS Volume I requirements would have to be uniquely
applied to the two Segment Specifications. In any case, Volumes II through XIII will be
allocated to the individual segments probably in the form of Critical hem Development
Specifications (CIDS) and Software Requirements Specifications (SRSs) as illustrated in
the tree.

4.1.5 System Software Architecture. The Mod Sim architecture is a functional
allocation of up to thirteen (12 segments and a virtual network controller) Computer
Software Configuration Items (CSCIs). The segment CSCIs communicate with each
other by means of messages on a virtual network. Further, software architecture
internal to each of the segments is left to the segment developer. Section 4.4 discusses
alternative segment software architectures, and Section 5.1.1 discusses the experience
gained on the Mod Sim demonstrator program with them.

4.1.6 Timing Requirements. Timing requirements are primarily driven by cue
correlation requirements. These requirements are critical factors in determining the final
nllocation between segments and modules and the fundamental frame timing (iteration
rate). Cue correlation requirements may vary from simple control input to instrument
response on a part task trainer to more complex multiple interrelated events on a full
fidelity weapon system trainer (WST). An example is the B-i WST, whose correlation
requirement involved visual transport delay, motion transport delay, and instrument
response. Requirements existed at the subsystem level for each of these items and at
the system level between the subsystems. Specifically, the visual system requirement
was a transport delay of no more than 117 milliseconds, a motion system delay of no
more than 50 milliseconds, with a restriction that the visual response in no case could
precede the motion response. With the fundamental MSS assumption that a message
transmitted in one frame must be received by the next frame, the message critical paths
must be defined and coupling decisions made accordingly. This also requires that a
frame rate be defined which may subsequently be changed during the frame timing
trade study discussed in Section 4.4.2.

In addition to cue correlation requirements, there are subsystem operational
requirements that relate to latency. For instance, a simulated laser designator function
would normally require a service from an intervisibility server to determine which object
in a sensor data base is being alased". If the service request takes too long getting to
the server, and the object is a high velocity moving model, lock-on may not occur since
the object may have moved out of the laser LOS cone defined in the request. This
example might dictate that the laser ranging service of the intervisibility function be
allocated to the Radar segment to be collocated with the laser designator function. The
results of the latency analyses represent a significant input to the frame timing trade
study referenced above.

4.1.7 Selective Fidelity Requirements. Selective fidelity refers to varying degrees of
fidelity for the individual simulation models that make up a simulator. Selective fidelity
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should be considered where families of trainers are Involved, such as weapon system
trainers, mission trainers, part task trainers, desk top trainers, and others. Typically a
WST function would have the higher fidelity requirements and consequently are more
complex, requiring greater computational resources. Trades are recommended to
determine whether the additional computational resources, required for the higher
fidelity software, offset the cost of unique software for a lower fidelity device, such as a
CPT, with lesser computational resources. Experience has shown that reuse of high
fidelity software in lower fidelity devices is generally preferable to maintaining multiple
software baselines with its associated life-cycle costs.

4.1.8 Multi-simulator Networks. Many emerging simulators are intended to support
multi-participant or interoperable exercises over a network such as Simulation Network
(SIMNET) or Distributed Interactive Simulation (DIS). The Mod Sim architecture
includes a twelfth segment called the Environment segment, which accommodates such
network interface functions. The Environment segment should also perform the tactical
scenario and the platform and signal environment (hostile and friendly) functions along
with some of the natural environment functions in both the networked :uhti-participant)
and autonomous (single participant) training modes.

The fundamental difference in functionality of this segment when operating in the
network mode versus the autonomous modes, is that in the network mode the simulated
external environment is derived from network environment message traffic, while in the
autonomous mode the segment must actually simulate the external environment.

4.1.9 Sensor Data Base Allocation. In a Mod Sim, control of the visual and radar data
bases, threat environment, and navigation database is normally performed by the(7 Database Management functions within the Environment segment. These functions
contain all pertinent information regarding the access, modification, and level of detail of
the databases to be used in the simulation. When allocating sensor and visual data
bases to the Environment segment, it is important that the interface for data base
transmission to the sensor simulation systems or image generator not introduce any
additional latency than if the data bases were integral to those systems, as is normally
the case in a non-Mod Sim program. This is accomplished by the use of back door
interfaces between the data bases and the various systems. Back door interfacing of
the data bases is also required to prevent VNET saturation with data for image
generation systems.

Another reason for allocating the various data bases to this segment is that, in the
future, operation on SIMNET or a DIS based network will probably require the sensor
data bases to be dynamic with real-time changes defined from the network.

4.2 System Level Interfae- Definition. Generic system level interfaces are defined in
Appendix A of the IDD. They include the Mod Sim global types (interface data common
to all segments) and the individual segment interfaces. It is intended that Appendix A be
tailored to the application specific requirements using the embedded tailoring
instructions provided in the IDD.

4.2.1 Virtual Network Requirements. The Mod Sim architecture requires all inter-
segment data to be passed in the form of messages, as defined In Appendix A of the

0
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IDD, on a Virtual Network (VNET). The VNET may be Implemented by a physical
network, such as FDDI or Ethemet, shared memory, by a hardware back plane, or any
other communication architecture. The primary goal is to make the implementation of
the VNET transparent to the individual segments. The Mod Sim architecture permits
multiple segments to reside on the same computational system. When this occurs it is
desirable for the collocated segments to communicate with each other using the same
services as segments residing on the other processors within the Mod Sim complex. A
segment should not be able to differentiate the processor it is residing on, or whether or
not other segments are hosted on the same processor. In general, the segment should
be hardware independent.

4.2.2 Multi-segment Module Interface. When analyses Indicate that segments should
be combined into modules an additional interface must be defined between the Mod Sim
VNET and the individual segments and it must be transparent to the segments involved.
A module Interface receives incoming messages from the Mod Sim VNET and directs
them to the approprate segment(s) within the module. For outgoing message from the
constituent segments the interface will determine which messages need to be broadcast
to the VNET, retained within the module or both.

Figure 4.2.2-1 Illustrates the communication of a weapon reset message from the lOS to
the Weapon segment. The lOS Application first requests the Application Services to
send the message, then Application Services builds the message and requests the
VNET interface to transmit the message to the network, and then the module VNET
interface determines that the message need only be transmitted back to the module.
The interface then wdtes the message into the Weapon segment message memory and
notifies Weapon Application Services that the message is available. The bold lines
indicates the apparent path of data flow, while the dashed line indicates the actual path.

Figure 4.2.2-2 illustrates the communication of a runway light message from the lOS to
the Visual segment. Again the lOS Application first requests the Application Services to
send the message, then Application Services builds the message and requests the
VNET interface to transmit the message to the network, and then the module VNET
interface determines that the message need only be transmitted to the VNET. In this
instance the apparent and actual communication are one and the same.

Figure 4.2.2-3 illustrates the communication of an aircraft position message from the
Flight Dynamics to the Visual and lOS segments. In this example the VNET interface
determines that the message needs to be retransmitted to the sending module and to
the VNET. The interface then writes the message into the lOS segment message
memory and notifies lOS Application Services that the message is available and sends
it to the VNET.

4.2.3 Segment to Segment Interface. Segment interfaces, defined in Appendix A of the
IDD, should apply to most simulators for fixed, variable or rotary wing aircraft. However,
some interface tailoring is anticipated to meet specific application requirements. Every
effort should be made to use the reusable interface provided Appendix A of the IDD to
define the aircraft application. Addition of new messages and data structures for
specific applications may reduce the reusability of the segments. However, if a new

0
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message is required, it should be defined as generic as possible to promote future
reuse.

4.2.4 Back-Door Interfaces. A back-door interface is any interface between segments
or modules which does not communicate over the VNET. Back-door interfaces are
required when the required data rate exceeds the VNET bandwidth or when the data
format is incompatible with network transmission medium. An obvious example is pixel
data or RS-170A video from the image generator in the Visual segment to a display in
the Flight Station segment. Another example Is a 1553 bus between stimulated avionics
processors. In this instance, the prime consideration is the coupling required between
the processors as avionics communication rates may be much higher than the device
frame rate. Fly-by-wire control systems typically operate at 500 Hz, which Is
significantly higher than any normal device frame rates.

Figure 4.2.4-1 provides an example of a typical back door interface and an example of a
misuse of a back door interface. Back-door Interfaces are an exception to the rule for
Mod Sim and must be carefully considered before allocation.

4.3 Hardware Requirements. The specific computational hardware applied to a
simulation program should be consistent across the system, although it Is not a firm
requirement as hardware may vary from segment to segment within a system based on
specific program needs. Common hardware decreases acquisition and life cycle
maintenance costs. Acquisition costs are almost always reduced because of the
discounts associated with large quantity buys hardware and spares. Wfe cycle

" maintenance costs are also reduced because of less unique support equipment and
lesser requirements for unique maintenance skills. Regardless of the advantages, the
use of common hardware must not sacrifice performance requirements unless trade
studies indicate otherwise.

For a Mod Sim, the software architecture is a key factor in selecting a hardware solution.
When selecting the hardware solution, one should have a general concept of the
hardware design, but one should also be careful to not lock in prematurely. Mod Sim is
fundamentally a software architecture which Is adaptable to many different hardware
applications and therefore the selection may be made later in the program. This will
afford the opportunity to take advantage of performance increases associated with the
rapidly changing computational hardware market.

4.3.1 Computer Architecture. The following guidelines are recommended in selecting a
computer architecture for the application Mod Sim.

4.3.1.1 Computational Hardware Interrupts. The interrupt requirements for the
application CPUs must be defined prior to selecting the hardware for each segment or
module. Interrupts allow synchronization of segment and module execution. In Mod
Sim, the ClockTick message is a high priority interrupt for this express purpose. Since
other hardware devices communicate with processors, through interrupts, consideration
must be given to ensure that the number of Interrupts meets simulation requirements.
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Also the priority vector of the interrupts must accommodate all hardware elements (e.g.
VNET CPUs, FDDI boards, etc.) in the Module.

4.3.1.2 Byte Transmission Architecture. A significant consideration in selecting
computer hardware for an application is byte order of transmission. The preferred
architecture is most significant byte to least significant byte, also known as Big-Endian
architecture. This implementation simplifies the interface with the VNET, which is
currently defined in accordance with MIL-STD-1 777. If the processors selected are
least significant to most significant order, Little-Endian architecture, there will be a
requirerr, -1,, for the processors to translate between the two formats, if the implemented
VNET is Big-Endlan. A final consideration in selecting one or the other architecture is
potential reusability. Since Big-Endian is more prevalent, it follows that there should be
more opportunity for reuse with that implementation.

Regardless of whether the processors are Big or Uttle-Endian, it is recommended that
they be the same across the simulation system. If they are not, then the majority type
processor must be determined, and a representation specification prepared for a
Presentation Layer routine (see Section 7.1.7) that swaps bytes to execute on all
minority CPUs for virtually every message. Altematives to this Presentation Layer
routine are available. For example, it is possible to pass the byte-order requirement to
the network interface so that explicit Presentation Layer translation is not required.

4.3.2 Network Interface Hardware. One of the most important trade studies to be
performed on a Mod Sim is the trade to determine the network interface hardware. The
factors to be considered include required data rate based on the tailored message
content, iteration rate, segment to module allocation, flexibility to reallocate segments
"(i.e. growth), standardization, and transmission reliability. Since the interface hardware
is the prime element for standardization in a Mod Sim, the effects the selection will have
on the individual segments and modules is probably the overriding consideration of the
study.

4.4 Software Architecture. Software architectures for all segments should be defined
during the Systems Engineering phase of the program. Two alternatives exist in
determining a system's software architecture. A unique software architecture for each
individual segment that best suits that segment's requirements or a common software
architecture for all segments in the system. The advantages of the latter include
potential reusability and the associated reduction in software development costs,
simpler integration, increased design standardization, and others. Since the
performance to cost ratio of processing resources tends to make quantum increases, an
increasingly disproportionate percentage of program costs are associated with software
development. Reusable software offers at least a partial solution to minimizing program
development costs.

Although a common architecture is generally preferable, it does have some
disadvantages. A common architecture will undoubtedly constrain the segment
developers to some degree by narrowing the developers choice of hardware and/or
software solutions. It can actually eliminate some Innovative solutions altogether. A
common architecture may even eliminate potential segment developers due to
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Inexperience with the architecture or product Incompatibility. In general, the greater the
number of segment developers, the greater the impact of a common architecture.
Conversely, a program with few segment developers affords an excellent opportunity to
standardize the segment software. Section 5 presents a more detailed discussion of
software design considerations.

4.4.1 Operating System(s). One factor in the selection of the application hardware is
the operating system (OS) associated with the hardware. The OS must support all
hardware and software interrupt requirements for the simulator. In addition, VNET
interface processing must be able to interrupt real-time simulation processes in order to
provide simulation synchronization.

4.4.2 Frame Timing. Probably, the most important trade study to be performed on any
simulator is the one that ultimately determines the device frame rate. As stated in
Section 4.1.6, timing requirements are a key factor in this analysis. In addition to
latency requirements, subsystem interoperability requirements may influence the frame
rate. When actual aircraft avionics hardware and software are used in a device, it may
be necessary to use the aircraft frame rate, or sub multiple thereof, to synchronize the
simulation to the avionics. If avionics compatibility dictates a different frame rate than
the timing analysis, it may be necessary to relax timing requirements, identify more
complex alternatives or reconsider stimulation of avionics components.

4.4.3 Data Engineering Units. In a modular simulator architecture, communication of
data between segments is expressed in engineering units according to the Appendix A
interface definition. A message recipient is required to make the proper engineering unit
assignment to each variable and convert to internal segment units, if necessary. The
segment designer is responsible to adhere to the Appendix A engineering unit
assignments and to perform internal calculations concerning individual variables at the
assigned resolutions. This will allow using segments to make proper assumptions as to
the accuracy of the variable data values.
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5. SOFTWARE DESIGN ACTIVITIES

As part of the top level system design activity, Systems Engineering defines the system
architecture, including VNET communication protocol, segment/module configuration,
the required functiona;ity for each of the segments, and the system level interface
requirements. Segment commonality trade studies may warrant additional system
requirements such as a common VNET interface for all segments, common software
language, common segment software architecture, common executive functions, and
others. This section addresses segment software architecture, VNET interfaces,
coordination and communication between segments, messaging, software coding, and
software testing as they relate to a Mod Sim.

5.1 Segment Software Architectures. In order to preserve one of the premises of the
Mod Sim concept, intemal segment design is not normally mandated. This allows open
competition for segment proposals from a broad base of the simulation industry.
However, trade studies may determine that some measure of commonality can be
beneficial and in those cases Systems Engineering will specify the software and/or
hardware elements which must be common across the segments. As previously stated
in paragraph 4.4, common architectures offer many benefits over segment specific
architectures. It is recommended that system designers consider common software
architectures for all segments in the system.

Another factor concerning common segment architecture is the emergence of domain
engineering. it is expected that future application programs will implement common
Domain Specific Segment Architectures (DSSA), to take advantage of the reusability
offered by both the Mod Sim concept and domain engineering. Even though the DSSA
is expected to become the norm for Mod Sim design, inevitably some programs will be
exceptions, and will require one or more segments to have special software
architectures. DSSA is discussed in more depth in Section 6.

5.1.1 F-16C Mod Sim Segment Software Architecture. In the Mod Sim F-16C
Demonstration program, segment software designers were given segment interface and
timing requirements as their only design requirements. As a result, segment software
architectures differed somewhat. Different software languages were used, translators
were used, and some software was used as is.

All segment designers adopted a software architecture based on the same sample
executive (cyclic) program. Beneath the executive level, however, two different data
control design approaches were taken. In the first design, data sharing between
functions was implemented by storing the data in a common memory area, allowing all
software elements to access this data at will. In the second design, data flow was
controlled, isolating the inputs and outputs of each function and passing the data in
function calls. These segments proved to be easier to debug and integrate since
reading and writing of data was explicitly defined, and therefore, it was determined that
this architecture would be easier to adapt and reuse. The following guidelines will aid in
implementing this design:
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a. Data objects may only be declared In Ads packages, tasks and subprogram
bodies. In particular, this prohibits creating an Ada package called Global which

(. contains all the variables used to communicate between subprograms.

b. Segments may be decomposed to the depth required for the program (Figure
5.1.1-1). Data may only flow from one element to another through the
subprogram parameters for each element.

Assume that Object_1 has an output (called X) that is required by Object_4 as
one of i.s inputs. Further, assume that each of the Subsystems and Objects are
called left-to-right: The Segment Scheduler calls SubsystemnA, then
Subsystem...B, and finally SubsystemC; SubsystemA calls Objectl1, then calls
Object_2, and so on.

In this software architecture, ObjecLl is called with X as one of its outputs. X is
also one of the outputs of Subsystern_A. X is an input to Subsystem_C and is an
input to Object_4. This data flow is illustrated in Figure 5.1.1-2.

c. Considerable clarity can be gained if all the data flow is localized at one level.
Accordingly, all communication is located near the top of the segment software
structure, in the Segment Scheduler. Pseudo code for the scheduler would look
something like the following:

Get_TheMessagesjFromTheVirtualNetwork(Functionjlns);
Execute_All_TheFunctions(Function_lns, FunctionOuts);
Send_TheMessagesTo_TheVirtualNetwork(FunctionrOtts);

5.1.2 VNET Interface. Paragraph 4.2.3 introduced the VNET and its top level
requirements. The following paragraphs provide additional detail with respect to its
functional requirements and top level design.

5.1.2.1 VNET Interface Performance Requirements. Two essential requirements exist
for the VNET Interface. They are reliability (data integrity and error handling) and speed
(communication response). The VNET interface must manage routine transmission
errors, and notify the Application in the event of an unrecoverable error. The VNET
must complete the transmission of a message within the required time, to minimize
Application time spent waiting for VNET response to its requests.

5.1.2.1.1 Data Integrity. The Application should control the transfer of data from the
VNET. The VNET Interface should not write into the Application's data area except at
the request of the Application. The Application should call a function to command the
VNET to transfer data to it. Between these calls, the Application must be assured that
no data transfer will take place.

There is always a possibility that the VNET Interface might be in the process of reading
in a message at the very time that the Application asks for that message. Since the
message is incomplete, the VNET Interface should not make the message available
until the whole message has been transferred in from the VNET.
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Another data Integrity requirement is that data, once sent to the VNET Interface
software, cannot be modified or corrupted en route. That is, the interface Is responsible
for the proper transmission of the data once the Application requests a message
transfer to the VNET.

5.1.2.1.2 Error Handling. Every medium for data flow between segments whether It be
shared memory on the same CPU, shared memory on a back plane, or a network bus
like FDDI, carries the possibility of error. It is essential that the VNET Interface not
present erroneous or incomplete data to an Application. The protocol specified for the
VNET on the Mod Sim Demonstration program was the XTP. XTP met the requirement
for error detection and automatic retransmission of data at a very low cost In
computational overhead.

When responding to a request for data, the VNET Interface should notify the Application
when either no data or no new data exists, so that the Application can take the
appropriate action. The first condition arises when a message of a given type has
never been received by the VNET Interface. A probable cause of this condition is that
the sending segment is not connected to the VNET or a change in the original state of a
send on change message (See paragraph 5.3.2) has yet to occur. In these Instances, a
buffer or memory location associated with the message will already exist, but the
Application should not use the "data" in It. The VNET Interface should always alert the
Application when the data should not be used.

The second condition arises when no new data has been received by the VNET
Interface. For example, assume that the Application has asked the VNET Interface for a

Sspecific variable, and the VNET Interface has provided the data. After some time
passes, the same Application asks for the data again. If the VNET Interface has not
received another message of that type, it must alert the Application that the data has not
changed. This is especially relevant for send on change messages. Malfunction
Insertion, for example, consists of an Application query to the VNET Interface, to find if
there is a subsequent malfunction message to process. If there is, the VNET Interface
delivers it.

A third condition can exist where new data is available but it is erroneous from the
sending application. In this case, the interface has no responsibility for error detection
or retransmission. Range checking and other detection methods must be the
responsibility of either the sending or receiving segments or both.

5.1.2.1.3 Communication Response. There are two performance factors associated
with message transmission speed. First, there is the fundamental system level
requirement that all messages transmitted in one frame must be available to the
destination Application(s) at the beginning of the next frame. Since a message can be
transmitted at the last possible moment in the usable portion of a frame, the allotted time
!• simply the minimum spare time requirement specified for a frame. For example, in a
simulator with a 50% spare frame time requirement, an Application can command the
VNET Interface to send a message as late as halfway through the frame. This
translates-into a system level, half-frame requirement for end to end transmission of all
messages in a given frame. With this system level requirement as the baseline, the
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segment designer must then address the second factor, which is VNET Interface
response time. The segment designer must determine the maximum amount of
message traffic, in and out, for the worst case frame of the segment to determine how
fast the VNET interface must operate for the largest transmission requirement.

5.1.2.2 VNET Interface Functional Requirements. A VNET Interface, as defined in the
Mod Sim design, is required to send and receive messages to and from the network.
The following paragraphs describe the required functions for a VNET Interface.

5.1.2.2.1 Send Message and Send Ust Functions. These VNET functions send data to
the VNET in response to Application requests. While In transit to the VNET Interface
the data should be protected from writes by the Application. In the event of an error,
these functions should automatically and transparently retransmit the data. If a
catastrophic error occurs, the functions should notify the Application accordingly. These
functions should also return the status of the transmission, which is either successful or
the VNET Interface has determined that the segment is an unauthorized sender for the
message or list of messages.

5.1.2.2.2 Receive Message and Receive Ust Functions. These functions makes data
available to the Application upon request. They makes only complete copies of a given
message available to the Application and return the status as either no data, no new
data, new data or the segment is an unauthorized receiver for the message or list of
messages.

5.1.2.2.3 Segment Identification Function. When common VNET interfaces are used,
this function Identifies the segment to the interface so that the interface can determine
which messages the segment is authorized to send and receive.

5.1.2.2.4 Message Ust Function. This function identifies each of the messages, and
the authorized senders and receivers for each message.

5.1.2.2.5 Number of Copies Function. This function identifies the number of copies of
each message type to be kept by VNET Interface to ensure that required messages are
not overwritten. This is particularly important for send on change messages of the same
type (Section 5.3.2 discusses multi-copied messages).

5.1.2.2.6 Application Interrupt Function. This function interrupts the Application layer
upon receipt of specific messages which require immediate segment action. The most
notable example is a segment synchronization message normally issued by the lOS
segment. Others may include send on change messages.

5.1.2.3 Additional VNET Interface Design Considerations. The following paragraphs
address additional design topics and some lessons learned with the Mod Sim
Demonstration program.

5.1.2.3.1 Communications with the VNET. The means of communicating with the
VNET is dependent on the hardware and operating system used on the system.
Therefore, the design of the VNET Interface must be considered in the design trade
studies, as the hardware and operating system are selected.
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Because the VNET must respond to multiple requests, there must be a means of
communicating the requesting segment, the request, and data associated with the
request (e.g., Message ID, Status Return) between the segment Application and the
VNET. On the Demonstration program, each segment had its own VNET process. The
segment wrote to a known memory area and generated a VME bus interrupt for the
VNET process.

On a VME bus based system with each VNET Interface in its own CPU, an area of
memory may be allocated to control blocks, one per segment, where the segment can
write request data. The segment CPU interrupts the VNET CPU, and the VNET CPU
scans the request areas and processes all requests.

On a Unix-based system, the segment Applications may use Unix pipes to send request
data to the VNET. The VNET process would then "pend on the pipe" or respond
through a signal handler.

5.1.2.3.2 VNET Data Control. In a Mod Sim software implementation a data object is

declared for every message. These declarations are in packages called:

<segment name >_Outputnterfaces

There is one package per segment, and these packages are stored in a directory which
contains nothing else. Comment fields near the message object declarations in these
files define all the other segments to which the message is to be sent.

(7 On the Demonstrator program, a utility program went through each of these files and
built an Ada package consisting of the message name, declared as an enumeration,
and an array of 32-bit integer flags indexed by that enumeration. The message name
was copied from its declaration in the message object files. The flags were bit flags
constructed from the comment fields. For example, if the Environment segment had the
enumeration value of 1, the 1 bit would be set for any message destined for the
Environment segment. The 32-bit flag was divided into two 16-bit halves. The first half
defined the authorized sender, in which only one bit would be set, since only one
segment is authorized to send a given message. The second half contained a bit map
which defined the authorized receiver(s) of the message.

There were three problems with this approach. First, comment fields were used to
define the authorized receivers of the messages. Rt is a questionable practice to rely on
comments, since they may not be accurate. Second, the enumeration and bit fields had
to be compiled into the VNET software. Each change in the definition of a message
resulted in a requirement to recompile the VNET software. Third, the declaring of data
objects in a package is contrary to some recommended coding standards. In fact, the
message object declaration files were used for no other reason than as inputs to these
utilities.

It is a reasonable alternative to put the message names and the authorized sender and
receiver information into a data file which is read at initialization by all VNET Interfaces.
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The use of data file eliminates the need to recompile every time a message destination
is changed or added.

5.1.2.3.3 Buffer Allocation. Data buffers for storing message data which the individual
segment Application can access must be allocated. On the Demonstration program,
these buffers were allocated to the VNET CPU. The VNET Interface, when queried,
merely returned the address of the buffer containing new data to the Application. An
alternative design may move all copies of a message from the VNET to the Application's
memory on a Receive Message function call. Then, when the Application required the
next copy of the message, the Application Services (a Mod Sim implementation
discussed in Section 5.1.3) would advance to the next copy without accessing the
VNET.

On the Demonstration program, some of the segment hardware devices, when
combined with the traffic from the FDDI board, could cause VME bus time-outs. In order
to resolve this problem, the VME bus time-out interval was increased. This experience
shows that designers must consider the memory bus in locating message buffers. For
example, if the Application CPU board has the ability to perform fast DMA transfers, and
if this will not interfere with other requirements of the back plane, locating the message
buffers in Application memory may be desirable.

Finally, it is possible that segment Applications will execute in memory that will not be
visible to the VNET CPU, but that the VNET CPU's memory will be visible to the
Applications CPU. In this case, the Application Services must perform data transfers.
If the opposite is true, and the Application memory is visible to the VNET Interface, the
VNET Interface must perform the data transfers.

5.1.2.3.4 Network Drivers. The VNET Interface software must also manage network
communication hardware. This software will include network drivers (e.g., FDDI board
drivers) for the appropriate hardware and operating system, and auxiliary software (e.g.,
sockets) to communicate with the network driver.

5.1.2.3.5 Interrupts from the VNET. The implementation of the Application Interrupt
function will depend on the application hardware and operating system. On the
Demonstration program, the segment Application determined the subprogram to be
executed within its Application Services when a given message arrived. The Application
Services, in turn, informed the VNET Interface to interrupt the Application processing
whenever the message was received. When the message arrived, the VNET software
placed the Message ID in a known location and generated a VME bus interrupt.
Application Services, which contained an index of Message IDs to subprograms, then
executed the proper subprogram.

5.1.2.3.6 Starting and Stopping. Some of the activities of the VNET Interface (e.g.,
Send and Receive Message functions) must be executed as quickly as possible to
reduce the effects of latency, while others, such as converting the message name and
allocating message buffers, might be time consuming, and might even interfere with
real-time operation. The Demonstration program had a function called Start_BIU which
served as the dividing line between real-time and non-real-time operations. Attempts to
perform real-time functions prior to completion of StartBIU were considered to be error
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conditions. For example, messages received from the VNET before the call to
StartLBIU were Ignored and discarded, since the message buffers were not allocated
yet. Similarly, attempts to execute non-real-time functions after the VNET Interfaces
were initialized were considered to be errors.

There was no Mod Sim requirement to stop and restart real-time operations. It this
requirement exists for an application simulator, StarLVNET and Stop_VNET services
must be implemented. These services will place the VNET Interface In the proper state
for performing real-time and non-real-time operations respectively.

5.1.2.3.7 VNET Interface Response. Software Engineering must decide during
software preliminary design about waiting for the VNET Interface to respond to a
request. In the Demonstration program, the segment Applications waited until the VNET
software finished processing the request. This design was implemented due to the
requirement that Application data in messages must be immediately readable after a
Get command and must be immediately writable after a Put command (Get and Put
commands are discussed under Application Services later in this Section). In this
implementation, the Application is blocked while data is transferred to or from the VNET,
it writes to the buffer immediately after a Put command, and reads from the buffer
immediately after a Get command. The VNET software responds "done" as soon as it
has copied the data, even though it may still be processing the data It is important that
the VNET Interface respond as quickly as possible without allowing data to be
corrupted.

5.1.2.3.8 Presentation Layer. As discussed in paragraph 4.3.1.2, the Presentation-
Layer may have to translate between Big-Endian and Uttle-Endian representations andtranslate various floating poin.t formats between the Application and the VNET. On theMod Sim program, the Presentation Layer was resident in the VNET software.

In some applications, CPUs of different architectures may reside on the same back
plane. In this case, the Presentation Layer reformatting must be performed in the
Application Services. Otherwise, it is more convenient for the VNET software to perform
this reformatting for all its client CPUs.

5.1.2.4 VNET Interface Software Reuse. A primary goal of modular simulation is
software reuse, and in particular, the VNET Interface software should be reusable
between segments. It should be possible, given identical computational hardware, for
the same VNET Interface software to operate with every segment in a Mod Sim.
Nothing about the VNET Interface should be specific to a given segment.

5.1.3 Application Services. On the Mod Sim Demonstration program, Application
Services provided access to the VNET interface for the segments. In cases where there
are several segments in the same module, the Application Services must service each
segment without introducing latency. This may require several instantiations of
Application Services if the message traffic warrants. The following paragraphs describe
the various Application Services functions.

5.1.3.1 Put and Put_LUst Functions. The Put function is used to send a message to the
VNET. It is recommended that the Put function be called for a message as soon as all
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the data in the message have been computed. Using the Put function in this manner
distributes message traffic throughout the frame. If segments waited until the end of a

( frame to call Put, all the traffic on the VNET would be concentrated at the end of the
frame. Put_List is identical to Put except a list of messages is sent to the VNET rather
than a single message.

5.1.3.2 Get and GOtUst Functions. The Get function requests the VNET to provide a
new copy of the desired message. GetUst permits the VNET Interface to poll and
update the status of an entire list of messages In one call. The Mod Sim Application
program interrupted the VNET software for every Getist request. The GetUst call
was created to reduce the number of interrupts experienced by segment VNET CPUs.
The time required to respond to a large number of software inquiries would overload the
VNET CPU for some of the segments. Since the greatest number of requests a typical
segment made were Get calls, and since Get calls were cyclic, (i.e., the same Get calls
were used at the start of every frame 1, every frame 2, etc.) a GetIUst function was
found to be beneficial.

5.1.3.3 ConnectToYNET and Disconnect_From_VNET Functions. When connected
to the VNET, all messages to and from the segment are processed by the VNET
interface. When disconnected from the VNET all messages to and from the segment
are ignored.

5.1.3.4 LAm Function. The I-Am function Identifies the segment to the VNET interface
to ensure that the segment is an authorized sender for output messages and an
authorized receiver for input messages. The only reason for this function is to allow the
use of common VNET interfaces across the device. If unique interfaces are used, the
segment identification could just as easily be hard coded in the interface.

5.1.3.5 Define_AMessage_RecordFor Function. This function defines a message
record, attaches it to a message buffer and defines the communication mode of the
message (i.e., Put or Get). It is an initialization function which is called once for every
message type intended to be transmitted or received by the segment.

5.1.3.6 NoOperation Function. This function probes the VNET interface to determine
if the interface can respond. It is an initialization function which is executed repeatedly
until communication is established.

5.1.4 Application Software. The Application software consists of the segment support
services and the simulation functions. With respect to the simulation functions, the
segment developer should be afforded maximum flexibility in defining the design.
Conversely, the support services, and in particular the executive service, are excellent
candidates for reuse and therefore should probably be specified to be common across
the simulator segments.

Another issue concerning segment software is the communication between simulation
functions. In keeping with the concept of a Mod Sim, communication between functions
within a segment is typically at the discretion of the segment developer. Section 4.4,
however, discusses the advantages of common versus segment specific architectures.
The same arguments would probably apply to Internal segment communications.
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5.2 Segment Synchronization. Every segment is required to produce and provide to
the VNET certain messages at certain rates. It Is therefore necessary to synchronize
the processing of all segments to a common clock.

5.2.1 Segment Synchronization Message. A segment synchronization message, sent
by the lOS to each segment, provides the common clock. Each segment executive
function must allow the VNET Interface to interrupt the segment whenever this
message arrives. Therefore, even though segments may be distributed on separate
processors, their activities must be coordinated through some form of synchronization
message.

5.2.2 Simulation Frames. Upon receipt of a segment synchronization message, each
segment begins a new frame (regularly scheduled, constant time intervals in which
segments must execute a predefined list of tasks prior to starting the next frame).
During each frame, a segment executes a specified portion of its iterative functions and
sends the appropriate messages (see Sections 5.3.1). A segment must send maximum
rate messages each frame, half rate messages every other frame, and so on. For
example, Flight Dynamics sends the messages:

1) Equations_Of_Motion_Max_Rate every frame,
2) Companion_Vehicles_HalRate every other frame,
3) Equations_Of_Motion_Quarter..Rate every fourth frame
4) Weight.AndBalanceEighthRate every eighth frame.

The frame rate assignments given in Appendix A of the IDD, are based on previous
experience with simulators and were coordinated during the Mod Sim program. These
assignments were based primarily on simulation fidelity requirements. For example,
weight and balance data changes by such small increments that it only needs to be sent
every eight frames, while equations of motion data changes so rapidly that it must be
sent every frame.

Systems engineers commonly decide that the simulation need not be broken down any
farther than eighth-rate or sixteenth-rate. It is conceivable, particularly when the
maximum rate is very fast (100 Hz or more), that 32nd rate messages may be allocated.
In this case, many of the maximum rate messages in the interface specification will be
lowered to half-rate, half-rate messages will be lowered to quarter-rate, and so on.

The lOS will set a simulation frame number in the segment synchronization message,
depending on the iteration rate chosen for the simulator. For example, If sixteen Hertz
is the highest iteration rate for a message, the lOS will count frames 1 through 16, then
start over again at frame 1.

5.2.3 Segment Scheduler. This Mod Sim executive service examines the contents of
the segment synchronization message and executes the appropriate set of segment
Application programs based on the current frame. This is commonly handled in a
Segment Scheduler subfunction of the executive service Pseudo code for a Segment
Scheduler may look like the following:
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loop
case Clock_Tick_Message.CurrentFrame Is

when 1 .>
GetTheFrame_1_MessagesFrom_The_VirtualNetwork;
ExecuteThe_Frame_1_Functions;
SendThe_Frame_1_MessagesTo_The_Virtual_Network;

when 2 w>
GeLThe_Frame_2_Messages_FromThe_Virtual_Network;
ExecuteTheFrameU.2 Functions;
SendThe_Frame_2_MessagesToThe_.irtual_Network;

when n ,>
Get_TheFrame_n_MessagesFrom_The_VirtualNetwork;
Execute_TheFrame_n_Functions;
SendThe.Frame_nMessagesjo_The_Virtual_Network;

end case;
end loop

This Segment Scheduler implementation will satisfy the requirements for coordination
within the segment.

During preliminary software design, functions and messages should be allocated to
frames. For example, if function A computes a temporary resuft which Is used by
function B, the delay between A's inputs and B's outputs will be minimized If the two(7 functions execute in the same frame, with function A executing before function B. Data
"flow analysis will assist in this allocation. The initial allocation of functions to frames
should be flexible, since frame balancing may be required during the segment
integration phase.

5.2.4 Coordination Between Segments. During Preliminary design, functions should be
allocated to frames to minimize latency between segments. For example, segment A
sends a quarter-rate message to segment B, which uses the data to compute other
data, which it sends in a quarter-rate message to segment C. Segment C uses the
message to compute data, which it sends in a quarter rate message to segment D,
which displays the result. Latency between segment A and segment D will be reduced
if segment A sends its messages on simulation frame numbers 1, 5, 9, and 13; segment
B sends Its messages in frames 2, 6, 10, and 14; and segment C sends its messages in
frames 3,7,11,15. Function and message frame assignments should minimize the
throughput delays in the simulator as a whole.

In order to coordinate between segments, it is necessary for the executive function of a
segment to provide notification when it falls behind. If this coordination is not provided,
and a segment is not able to complete its work before the next segment
synchronization message, it will send its output messages in the wrong frame, and
segment functionality will probably suffer.
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Accordingly, the segment executive must have some means of providing detection of
this condition. When this overrun condition Is detected, the segment may:

1) flag the overrun by notifying the lOS to record and display the condition
2) Increment an overrun counter
3) attempt to catch up with no indication outside of the segment

or
4) halt the simulation with an error message.

Requirements for the particular training system will determine the method of handling
overruns. These requirements should be based on the consequences of an overrun
(e.g., safety, loss of fidelity, data integrity, etc.).

A common method of overrun detection relies on Incrementing a counter In the segment
common memory when a segment synchronization message is received. The segment
executive service picks up this counter at the beginning of the frame. At the end of the
frame, the segment executive function compares Its counter to the current counter in
common memory. If the two are different, an overrun has occurred. An example of
executive function pseudo code that will perform this function is:

loop
ThisFrame := Common.Memory.Current_Frame;
Execute_One_Frame;
if ThlsFrame /- CommonMemory.CurrentFrame then

NotifyOOverrun;
else

e Wait_For_Next_ClockTick;"-4 end if

end loop;

5.3 Messages. Mod Sim communicates between segments through the use of
messages. There are two types of messages; iterative and send-on-change. This
section discusses these message types and some guidelines and considerations
concerning them.

5.3.1 Iterative Messages. An iterative message is a message which a segment sends
at regular intervals while the simulator is running. Typically, iterative messages contain
simulation variables which represent real world conditions that are continuous in nature.
To approximate continuous real world functions, the corresponding simulation functions
are executed Iteratively at rates sufficient to prevent the air crew from perceiving the
resulting stepping functions. The Iteration rate for a given message is determined by
several factors. These include coupling requirements to dependent functions, function
criticality, display rates for those message variables representing crew station display
values, cue correlation and transport delay requirements, change rate of a variable, to
name just a few.

5.3.2 Send-on-change Messages. Unlike an iterative message, a send-on-change
message is sent only when a change in the message data content occurs. Normally the
variables contained in send-on-change messages are discrete in nature and not subject
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to frequent change. The primary reason for a send on change message is to reduce
redundant message traffic on the network and the time associated with receiving them.
Another reason for send on change messages is that they may have an interrupt
associated with them requiring unique segment response. For example, the
Instructor/Operator Station (lOS) may use a send on change message to Inform a
segment to change simulation states.

Special care must be taken by segment designers to avoid overwriting the first send on
change message status with a second. The VNET Interface must be able to store
multiple copies of a message and present them to the Application. For example, an
automated lOS page responds to an instructor selection by setting MalfunctionA and
then clearing MalfunctionB. Each of the malfunction messages Is of the same
message type. If the VNET Interface for a segment that receives the malfunction
messages has space in its buffers for only one copy of a message, it would overwrite
the message that arrived first (the Malfunction_A message) with the message that
arrived second (the Malfunction..B message). As a result, the segment Application code
would not know to set MalfunctionA.

The approach employed on the Mod Sim Demonstrator for handling multi-copied
messages was to send a variable-length list. The message would contain data on a list
of threats, for example, along with the number of threats that were currently active.
That number may range from zero to the maximum number of threats permitted in the
simulation. One message of this type could be sent each frame, even If there are no
active threats.

The Mod Sim Demonstrator was limited to only a few active threats, so that the
occurrence o1 multi-copied messages was limited. However, in a simulation that
requires a large number of active threats at one time and a lot of data associated with
each threat, the message containing all active threats can be quite large. These large
messages pose problems for some VNET implementations. Accordingly, a different
method has been adopted for the current Mod Sim architecture.

The current Mod Sim architecture allows multiple copies of a message to be sent during
a frame. This permits an Application to send one message for each threat that it
controls. In some circumstances, when there are no threats, no message will be sent in
the current frame. In other cases, several copies of the same message, each
representing a different threat , will be sent in a given frame.

5.3.3 Hardware Considerations for Maximum Message Length. When a message is
longer than the Maximum Transfer Unit (MTU) of the media or the protocols, it must be
broken into pieces by the sender and reassembled by the receiver. This reassemble
process is very time-consuming.

To mitigate this time penalty, the designer must assure that the largest message will fit
into one packet on whatever media is used. The maximum allowable length is
computed as follows:

Max Message Length - MTU - PL - ML - GF
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where;
MTU is the smallest maximum transfer unit for the network(s) that may be
employed on the simulator to transmit the message (If more than one
network type will transmit messages, the shortest MTU should be used);
PL is the length of the longest protocol header which may be used;
ML Is the length of the longest Media Access Control (MAC) header which
may be used;
GF is a growth factor to allow for the growth of messages to incorporate
new data.

Note that if there are protocol or MAC trailers, these should be added to PL and ML,
respectively.

If the VNET is implemented as shared memory throughout the system, MTU Is not
limited. However, simulators often transfer data over Ethernet, for example, to the IOS
for display pages. ETHERMTU (1,500 bytes) may be used for MTU, but this value must
be used with caution, since some custom network drivers have smaller buffers.

Protocol and MAC headers and trailers are specified In the protocols and interface
hardware documentation. A factor of 100 bytes for the sum of these headers and
trailers generally offers a reasonably safe growth factor for message growth.

5.3.4 Assigning Messages to Frames. Messages are assigned to frames in the Mod
Sim based on several factors. One factor Is CPU load balancing. The proficient
segment designer should attempt to balance the frame time load on the CPU by
distributing the execution of functions among the frames. Frame balancing Is
considered good design practice because it affords the most flexibility to incorporate
new functions. If the function that produces a message only executes every 4 frames,
the message only needs to be sent every 4 frames. Another factor is coordination
between segments. Delays in computation due to message traffic must be minimized
throughout the simulator. A final determining factor is message traffic balancing.
Within the constraints of load balancing and coordination, the segment designer should
attempt to send roughly the same number of messages every frame, to avoid too much
traffic on the VNET. This is especially important when the VNET is implemented as an
actual hardware network.

During preliminary design, messages should be provisionally assigned to frames The
designer should make clear notes of the logic behind message frame assignments, so
that as actual execution times and network loading become known, necessary
adjustments can be made considering that logic.

5.3.5 Message Names. New messages required for the Application simulator should
be defined in the software prior to or during preliminary design. It is recommended that
the message naming convention used on the Mod Sim program be adhered to, in order
to take full advantage of Mod Sim reusability and utilities. The message related utilities
used in the Mod Sim Demonstration program relied on the names given to the
messages. For example, a message labeled *xxx_QuarterRate' was sent at quarter
rate.
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5.3.6 Message Identifiers. An identifier should be associated with each message. On
the Mod Sim Demonstration program, the Application software supplied the message
name to the VNET Interface, and the VNET interface returned a Message ID (a unique
integer) to the VNET. The Mod Sim software should also contain a segment identifier,
since the segment Application must identify itself to the VNET.

5.3.7 Authorized Senders. The Mod Sim architecture dictates that a given message
may be sent by one and only one segment, as defined in Appendix A of the IDD. The
VNET Interface is responsible to assure that messages are sent by the authorized
segment. Therefore, the VNET Interface must be able to notify the Application when it
is attempting to send a message for which it is not a legal sender. Ukewise, the VNET
Interface (in keeping with the reuse requirements above) must be capable of identifying
legal senders of messages to the VNET.

Assigning messages to a snder must be completed before software engineering
activities start, since messages are associated with functions which must be assigned to
segments during system design phase. Segment designers may continue to define
message receivers during software design, as they determine requirements for data
flows.

5.3.8 Authorized Receivers. The Mod Sim architecture also requires that the
authorized recipients of a message be identified, as defined by Appendix A of the IDD.
A segment is not allowed to receive a given message unless it is a authorized receiver
of the message. Due to this requirement, the VNET software must contain a list of legal
receivers for each message.

5.4 Engineering Test. Software Engineering test in a Mod Sim consists of stand alone
segment testing, to assure that each segment performs in accordance with its functional
requirements and that it has a high probability for successful integration.

5.4.1 Segment Test. A segment test tool is required to perform stand-alone segment
tests. The primary purpose of the segment test tool is to test the external interfaces of
each segment, defined in Appendix A of the IDD, that resides on a given computer
platform. It is recommended that designers of the segment test tool base the tool
design on the Appendix A interfaces. This design will allow the segment test tool to be
easily updated throughout the program as the Appendix A interfaces are modified.

It is further recommended that input test data be developed using user-friendly
construction tools that utilize standard Graphical User Interfaces (GUIs) to build
windows and pages. The input test data should be checked for correctness against the
interface specification. The user should have predefined interface data available for use
or change as required by specific tests. In addition, the user should be able to
selectively record test results data by selecting the interface data that is of Interest and
only recording that data. This will aid in the evaluation of the test results. Segment
testing can be divided into three distinct parts:

a. Test data file construction

b. Segment test control
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c. Output test data formatting

5.4.1.1 Test Data File Construction. The test data file construction tool should provide
options to create new test data files, load, copy, or delete existing data files, save
created or modified data files, and print data files. Use of the test data file construction
tool should follow the steps defined below:

a. Select a file creation/change option

b. Input a file name.

c. Input the segment to be tested

d. Define input messages and associated data from Appendix A. Select the
applicable messages from the list displayed, and input required data in place of
displayed default values. The input data will be verified and translated to a
machine readable format. Range or value errors in the message data will be
immediately identified to the user, so that an error may be corrected before the
test is run.

e. Define the output message data requirements, from a list of segment output
messages.

f. Specify the starting cycle, stopping cycle, starting frame in the cycle, number of
sends in the cycle, and the number of sends in the frame as appropriate for the7 particular type of message (send on change or synchronous) in which the input
data must be sent.

As the test data file is being constructed, It should be possible to display the current
layout of the test data file, in order to modify an existing message. The resulting
message data display should be identical to the display shown during the creation of a
message, except that the data values will be as stored instead of the default data
values. The user should also have the capability to change the message data object
values back to their default values during the editing process. The default data values
for each message in the system are defined by the segment builders/designers.

It should also be possible for the user to construct expected results data files for
comparison to the actual test results to enhance the data analysis effort. This file should
be constructed similar to the input test data files, except that the messages and data
shown will be the outputs of the segment under test.

5.4.1.2 Segment Test Control. The segment test tool coordinates all communication
with the segment under test and stores the segment's responses in an output data file.
Additionally, the segment test tool generates the segment synchronization message.
The test tool software connects to the segment's VNET and communicates with the
segment through the Application Services.
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5.4.1.3 Output Test Data Formatting. The results of the test should be assembled into
a user friendly (human readable format) report based on the user specified interface
messages. The format for this data should match the input test data and the expected
results data.

5.4.1.4 Application Tests. Application tests should be designed to verify interface and
segment specification requirements compliance. They should verify proper segment
outputs for a given set of inputs. These tests should also determine a segment's ability
to process bad data, such as input values out of range, and improper state transitions.
For completeness, the segment test input data should stimulate the segment as if it
were installed in the target simulator. In effect, the segment test inputs should match
those expected from the simulation system during normal operation.

5.4.2 Network Analyzer. It is recommended that every modular simulator have the
capability to collect data directly from the VNET. This capability is essential to analyze
system problems during hardware/software integration. In order to collect data from the
VNET, a network analyzer should be used. The network analyzer is used to support
several of the tests described in Section 5.4.3.

5.4.3 Other tests. Based on Mod Sim experience, engineering tests must be conducted
to verify the VNET interface with each segment, and the spare capacities of each
segment.

5.4.3.1 VNET Interface Test. VNET interface tests must be conducted to verify that the
VNET interface and Application Services are functioning properly.

"5.4.3.1.1 Message Count. It is important for each of the segments to keep a running
count of each type of message sent and received. These counts may be used to
confirm that a given message was received as many times as it was sent, which is
useful during integration. A segment's erroneous operation can often be traced to a
message not being sent or the message not being received. This tool can also be used
to identify a bad network interface. This feature may be implemented in Application
Services. If a message arrives at Application Services, it can be assumed to be
available to the Application. It is recommended that this message count be monitored
until integration is complete.

A second message count may be kept by the Application Executive, when it calls Put
and Get, and when compared with the count kept by Application Services, may be used
to debug the Application Services. The two counts should always match if Application
Services is functioning properly. Once Application Services is working, this second
count can be eliminated from the code.

5.4.3.1.2 Message Capture. It is often useful to capture an individual message at the
Application Services level to verify that the message was received exactly as it was
transmitted or to allow analysis of segment interaction problems. This capability may be
used to verify that a simulation function operates properly, when there is no other means
of verification. For example, a Mod Sim program requirement existed to drop a gravity
bomb, but- no means existed of demonstrating the weapon release, since the weapon
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displays were not available. By capturing and displaying several seconds of bomb
messages, it was possible to demonstrate that the simulator met the requirement.

5.4.3.1.3 Message Latency. On the Mod Sim program, a test was conducted to
measure message latency on the VNET. In response to a clock interrupt, an application
segment sent a single message at a fixed rate. Likewise, the receiving segment
requested that the VNET Interface interrupt the Application when that message arrived.
Therefore, the sending segment was interrupted when the message was sent, and the
receiving segment was interrupted when the message was received. The time
difference, measured by connecting an oscilloscope to the appropriate Interrupt lines on
the segments, constituted the latency of the message.

5.4.3.2 Execution Timing. Simulation software is typically required to adhere to
specified spare timing, spare size, spare input/output, and spare storage capacities. In
order to verify these parameters, it is recommended that software test tools be
implemented.

The capability to measure frame execution times should be selectable, so that frame
times may be measured at critical points in the simulation, such as during simulated
flight within ground effects. The timing tool should also provide subframe timing data,
that may be used to identify code that takes too long to run. The data should be
displayed as an array of elapsed frame times. On the Mod Sim program, the
Star_Timing and Stopiming utilities were used to measure software execution times.
These tools displayed the maximum, minimum, average and a histogram of the timing
points.

C- 5.4.3.3 Data Analysis and Display. The tools discussed in Section 5.4.3.1 and 5.4.3.2
must have the capability to display the data. The data capture tools operate in real-time,
and may store the data in a known address. The data display tools typically operate as
background tasks. A graphical display is often the most informative way to display data.
Many data-graphing tools are available. The Mod Sim Demonstrator program used the
PV-Wave commercial data-graphing tool on the Sun computer.

It is desirable to have the outputs of the measurement tools be exactly the format
expected by the data-graphing tool, but this is not always possible. For example, it is
useful to plot the outputs of the Segment Tester, but the Segment Testers outputs,
which consist of entire messages received from the segment, contain much more data
than is commonly required. On the Mod Sim program, it was necessary to filter the
data to include only the points of interest. This filtering used the Unix utility "sod"
(stream editor) and some special-purpose routines written in C. The "awk" and "prd"
utilities would also be good choices for these filter routines.
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6 6. SEGMENT SPECIFIC CONSIDERATIONS

Design requirements for any segment include the simulator application functions and the
segment support functions. Obviously the simulator application function requirements
are unique for each segment. Conversely the support functions are generally common
across all segments and should probably be specified at the system level If for no other
reason than to promote reusability. However, system level requirements imposed on
segments need to be carefully considered so as to not unnecessarily restrict or
encumber the segment designer. For example, a Visual segment, which normally has
limited application functionality, may not warrant a full set of common support functions
and the associated complement of processing resources.

The following subparagraphs briefly describe the overall functionality of the individual
segments and refer to tables that address the individual functions within the segments.
The tables provide Information with respect to the potential reuse of the Individual
functions, indications of any special equipment normally associated with the function,
and any special considerations for the function. Reuse potential Is expressed in terms
of high, moderate and low and generally indicates whether a function implementation is
adaptable to many varied applications, several related applications or an Isolated set of
applications respectively.

6.1 Flight Station Segment. The Flight Station segment provides for the simulation of
the common aircraft systems such as the electrical system, hydraulic system, fuel
management system, pneumatic system, oxygen system, autochecklist and crew station
interface functions. See Table 6.1-1 for further information on the segment functions.

6.2 Flight Controls Segment. The Flight Controls segment provides for the simulation
of the ownship control surfaces, control devices, and control systems. The segment
models the movement of control surfaces in response to change in the settings of the
flight controls. That information is fed to internal models of automatic flight control
systems, stability enhancement systems and trim. See Table 6.2-1 for further
information on the segment functions.

6.3 Flight Dynamics Segment. The Flight Dynamics segment provides the simulation
of the flight characteristics, flight performance, flying/handling qualities, mass properties
and structural limits of the aircraft throughout the flight envelope of the ownship. The
flight characteristics, flight performance and flying qualities model simulates the air
vehicle motion using flight test data, wind tunnel data and derived data as model inputs.
See Table 6.3-1 for further information on the segment functions.

6.4 Propulsion Segment. The Propulsion segment provides for the simulation of the
core engine, thrust generation, starting system, engine inlet, engine fuel, emergency/
auxiliary power unit and engine exhaust gas functions throughout the flight envelope of
the ownship. See Table 6.4-1 for further information on the segment functions.

6.5 Navigation/Communication Segment. The NAVCOM segment simulates the
navigation and communication system functions within the MSS. The navigation
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functions simulate navigational guidance with respect to selected navigation aid station.
The communications functions simulate reception and transmission of voice and

( encoded communications for the ownship. See Table 6.5-1 for further information on
the segment functions.

6.6 Weapons Segment. The Weapons segment simulates the offensive weapon
system functions employed on the ownship Including weapons delivery, stores
management, target designation and tracking, and weapons dynamics and effects.
See Table 6.6-1 for further information on the segment functions.

6.7 Radar Segment. The Radar segment simulates the radar functions, Including
system operational capabilities, radar effects, image mapping, and video generation and
display. See Table 6.7-1 for further information on the segment functions.

6.8 Electronic Warfare Segment. The Electronic Warfare segment simulates the threat
detection, electronic counter and counter-counter measures, expendable counter
measures and warning functions of the ownship defensive avionics. See Table 6.8-1 for
further information on the segment functions.

6.9 Physical Cues Segment. The Physical Cues segment provides for the simulation
of environmental sounds, aircraft motion, and vibration and buffet functions throughout
the flight envelope of the ownship. See Table 6.9-1 for further information on the
segment functions.

6.10 Visual Segment. The visual segment provides the trainee visual out-the-window
references and cues relating to the tactical and natural environments through which the
ownship is operating. The visual segment may also provide visual cues for profile type
view equipment such as Forward Looking Infrared (FLIR) or Infrared Search and Track(IRST). See Table 6.10-1 for further information on the segment functions.

6.11 Instructor/Operator Station Segment. The Instructor/Operator Station segment
provides the central point of control and monitoring for the entire simulation and related
training activities. As the cent a point of control for the MSS, the lOS provides the
capability to control the state of the simulation (freeze, reset, etc.), interject malfunctions
into the simulation, change parameters within the simulation, plan missions and lessons,
monitor the state of the simulation and monitor/measure trainee performance. The lOS
segment has complete control of the simulator; therefore, it may perform other specific
and unique functions. These functions include initiation of maintenance tasks such as
daily readiness tests and diagnostics and to control and manage specific test functions
such as hardware/software integration and/or formal qualification testing up through and
including FAA type acceptance testing and simulator certification (SIMCERT) testing.
See Table 6.11-1 for further information on the segment functions.

6.12 Environment Segment. The Environment segment performs the functions
necessary to simulate the tactical and natural environments external to the ownship
during autonomous operations. The Environment segment also provides the functional
interface for integrating the MSS into a Multiple Simulator Environment (MSE). See
Table 6.12-1 for further information on the segment functions.

0
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7. SUPPORTING INFORMATION

7.1 Networking Standards. There are several industry standards which address the
network protocols and Interfaces. These include the International Organization of
Standards Open Systems Interconnection (ISO/OSI) model, the ANSI FDDI standard,
IEEE standards, and Distributed Interactive Simulation (DIS).

7.1.1 ISO/OSI Model. A number of different standards organizations have divided the
operations of networked communications Into layers or partitions. One noted example is
the OSI interconnection model defined In ISO-7498. This model consists of seven
protocol layers as depicted in Figure 7.1.1-1. While the exact implementation Is not
universally accepted, the functionality and protocols defined therein are.

A fundamental premise In ISO-7498 is the notion of peer entities at each layer
communicating with one another. That is two Application Layer entities communicating
with one another, two Physical Layer entities communicating with each other, and so on.
Each level of entity has its own requirements and Its own expectations of higher and
lower entities. For example, Application Layer entities may safely assume that their
lower level Presentation Layer entities will supply them with data that is in a form that is
understandable to them.

Whether or not the layering is strictly followed, as with a system that has a separate
software element for each layers entity, or whether it is followed more Informally as it is
in the Internet model and in the Mod Sim architecture, the ISO/OSI model allows the
requirements for communications between processes to be more easily organized and
understood. The following paragraphs describe functionality of the individual ISO
layers.

7.1.1.1 ISO Application Layer. This is the only Layer in the ISO/OSI model that
provides services directly to Applications. No Application may take advantage of a
service provided in another Layer, except through an Application service. The services
in the Application Layer include:

a. Transfer of information.

b. Identification of intended communication partners.

c. Establishment of authority to communicate.

d. Identification of constraints on data syntax.

The last point means that it is the responsibility of each Application Layer to make its
own data formatting requirements known to the Presentation Layer so that the
Presentation Layer can provide them.

In the Mod Sim architecture, the services provided in the Application Layer are
encapsulated in a package called Application Services. Individual segment Applications
may only communicate with one another through these Application Services.
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(' Since message data in the Application Layer is purely data, discussion of headers is
meaningless. Applications may wish to have Identifiers within the message that control
how the message Is processed, but that is purely a matter for the designer of the
Application, and is beyond the scope of this discussion. Figure 7.1.1.1 -1 shows the
headers for a typical TCP/IP message transmitted over FDDI.

It is difficult to separate functions into layers In the real world. For example, In the FDDI
board driver for the Interphase 4211 board, the sending host is required to build the
MAC header and to allocate space for the MAC trailer before it sends the packet to the
board; but the MAC trailer is stripped off by the hardware on the receiving station and is
only available by reading certain status registers on the board. So, does the processing
of the MAC header and trailer reside on the FDDI board or In the host driver software?
It depends on whether the sender or receiver of a message Is being discussed. Similar
caution should apply to all the statements about functions and layers above.

7.1.1.2 ISO Presentation Layer. The Presentation Layer provides for the
representation of information that Applications either communicate or refer to In their
communications. For example, some CPUs are Big-Endian and others are Little-Endian
(see Section 4.3.1.2). It is the responsibility of the Presentation Layer to do any
conversion required between the layers.

Above the Presentation Layer, each Application deals with data that makes logical
sense to it. If a Big-Endian machine and a Little-Endlan machine each add two integers
or two floating-point numbers, then display the numbers and results to one another
through a network connection, each machine should agree that the computation is
correct.

Below the Presentation Layer a common method of data representation is used. In the
case of a Big-Endian machine and a Little-Endian machine, it is likely that only one of
them would understand this data. While the ISO/OSI model calls only for "negotiation"
between the Presentation Layers on two hosts to determine the lower-level
representation to be used, the Mod Sim architecture is defined such that Big-Endian
integers and addresses and IEEE-754 floating point numbers will be used exclusively
below the Presentation Layer.

Headers are not commonly applied to the message by the Presentation Layer.

7.1.1.3 ISO Session Layer. The Session Layer provides a "session connection'
between two presentation entities and permits normal data exchange. This data
exchange can either be connection-based or connectionless, depending on the kind of
data transfer. For example, Universal Datagram Protocol (UDP) is connectionless and
is the only protocol of the three in which broadcasting is commonly done. Transmission
Control Protocol (TCP) and Xpress Transfer Protocol (XTP) are connection-based and
support both point-to-point and multicast (one point to many) data transfer.
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While UDP, TCP and XTP all function at the Transport and Network Layers, it is the
K responsibility of the Session Layer to set up the connections that enable their operation.

The software in the Mod Sim architecture to do this resides in the VNET interface.

The Mod Sim program did not apply any particular header at the Session Layer, but
rather relied on the port number in the Transfer Layer header to uniquely identify the
message. Future implementations of Mod Sim may find it helpful to place the Message
ID and size (for variable-length messages) in a header.

7.1.1.4 ISO Transport Layer. The purpose of the Transport Layer is to provide
connections between Session Layer entities and to relieve them of any concern with the
detailed way in which reliable and cost-effective transfer of data is achieved. A
connection at the Transport Layer may support several different Session Layer
connections, or a Session Layer connection may be implemented by several
consecutive Transport Layer connections. Several protocols perform most of their work
at the Transport Layer. The protocols of interest are again TCP, UDP and XTP.

UDP is connectionless: no acknowledgment is required when a message is transmitted
from one process to another. The sending process merely transmits the message to the
network. It is entirely possible that the receiving process may not be able to receive the
data, or that the data may contain errors. No check is made at the Transport layer for
either of these eventualities, though the Session Layer or Application Layer may wish to
perform checks (e.g., the Application may require that its corresponding Application
acknowledge all messages).

(7. TCP is connection-based: before one process transmits data to another, the two
communicate with one another to establish that data transmission is possible. After the
data is transmitted, the receiving process acknowledges its receipt with another
message. The closing down of a connection is accomplished with a similar exchange of
messages. It is the responsibility of the Session Layer to set up connections, manage
data transfer, allow for the orderly shutdown of connections, and synchronize the
communications (determining which process transmits at what time).

XTP is similarly connection-based, but the number and size of acknowledgments are
smaller than those in TCP. XTP can at least theoretically exchange data faster than
TCP.

TCP and UDP both require Internet Protocol (IP) to meet their Network Layer
requirements. For example, the TCP or UDP header of a message which is placed on
the message by the Transport Layer will be prefaced with an IP header by the Network
Layer. XTP performs Its own Network Layer services. An XTP packet contains both a
header and a trailer and does not require any IP header.

7.1.1.5 ISO Network Layer. The Network Layer provides an addressing mechanism for
the transfer of data. The most commonly used addressing method is the 32-bit, IP
address. MIL-STD-1 777 describes this addressing mechanism and illustrates the other
functions performed by the Internet Protocol.
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The Network Layer (assuming IP is used) places an IP header inside the MAC and
Logical Unk Control (LLC) headers on the message which contains the IP addresses of
the sender and Intended receiver(s) and fields containing a flag for the protocol
contained In the packet. packet length, and packet checksum

The bulk of the function of the Network Layer has to do with routing through different
networks; this is not done in the Mod Sim architecture.

7.1.1.6 ISO Data Link Layer. Data link connection takes place by means of physical
connection. It is always true that higher level layers depend on lower level layers for
their functionality. Data Unk Layer functions Include token management on a ring bus
architecture, system timer support, packet framing, and peer-to-peer communications
using hardware addresses. These functions correspond to the FDDI MAC layer. Data
Unk Layer data structures correspond to FDDI or IEEE-802 frames.

The MAC sub layer also provides a network-specific header (and possibly trailer) on the
data which forms the outermost boundaries of a packet. This wrapper provides
information which controls such things as frame type Identification, frame length
identification, 48-bit hardware (or MAC) addresses of sender and intended receiver, and
flags which may note that an error has been detected in the system. The type of header
supplied will depend on the type of network (Ethemet, FDDI, etc.) being used to transmit
the data. Figure 7.1.1.1-1 shows all the headers in a typical FDDI message.

The Data Link Layer also Includes the following activities: connection management,
fault detection, fault isolation, and ring reconfiguration. At the top of the Data Link -

Layer, providing services to the Network Layer, Is IEEE-802.2 Logical Link Control. The(C LLC sub layer supplies a header (contained Inside the MAC header) containing the type
"of packet which is to follow and the protocol which it contains.

7.1.1.7 ISO Physical Layer. The Physical Layer contains the mechanical and electrical
elements that comprise what is called the physical media. The process of establishing a
physical connection between two processes Involves such things as connecting cables
and boards, triggering electromechanical bypasses, and providing electrical power. The
unit of data on the Physical Layer is one bit (in serial transmission) which is either on or
off. These functions correspond to the FDDI Physical Media Dependent (PMD) layer.

The Physical Layer also Includes such things as 4B/5B encoding (encoding four bits into
five line state transitions) which correspond to FDDI Physical (PHY) layer functions.

7.1.2 The Fiber Distributed Data Interface (FDDI), FDDI also has layers: the MAC
Layer, the PHY Layer, the PMD Layer, and a "layer" for Station Management (SMT)
which performs functions at all the other three levels. These layers perform functions
that correspond to the two lowest layers of the ISO/OSI model: the MAC layer
corresponds to the lower part of the ISO/OSI Data Unk Layer and the PMD and PHY
correspond to lower and upper portions, respectively, of the ISO Physical Layer. Figure
7.1.2-1 illustrates these layers with respect to the IS0/OSI model.

7.1.3 Institute of Electrical and Electronics Engineers (IEEE). The IEEE has also
published a set of standards describing the lower two ISO/OSI layers. IEEE-802.2
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describes LLC which is at the "top" of the Data Unk Layer; IEEE-802.2 LLC Is also used
above the other layers of the FDDI standard. IEEE-802.3 describes Ethernet. IEEE-
802.4 describes the Token Bus, and IEEE-802.5 describes the Token Ring. Figure
7.1.3-1 illustrates the IEEE standards as they relate to the ISO/OSI model.

7.1.4 Distributed Interactive Simulation (DIS). DIS is an emerging standard for
networked simulation which is intended to replace SIMNET. The draft Standard,
temporarily numbered IST-CR-93-01, contains the requirements for the protocol data
units (PDUs) associated with entity information, entity interactions and simulation
management information that are exchanged between simulation applications
interacting in a distributed interactive simulation. The DIS protocol encompasses a
portion of the application layer of ISO/OSI model.

7.2 Processes. There are several software development processes which are gaining
acceptance in the real-time simulation Industry. Three of the more prominent are
Synthesis, ADARTS and Structural Model which are discussed In the following
paragraphs.

7.2.1 The Software Productivity Consortium (SPC) Synthesis Process. Synthesis is a
methodology for constructing software systems as instances of a family of systems that
have similar descriptions. Synthesis enables developers to exploit similarities to
eliminate redundant work, and allow focusing on resolving the project unique variations.
The Synthesis Guidebook, SPC-91122-MC, provides an introduction to the practice of
the Synthesis methodology of software development, and a thorough discussion of
Domain Engineering (standardization of Application Engineering products and
processes).

7.2.2 Ada-based Design Approach for Real-Time Systems (ADARTS). For simulator
programs where Ada is imposed, the ADARTS Guidebook, SPC-91 104-MC, is
available to assist systems designers and software engineers in the development of the
simulator. The guidebook provides decomposition guidelines and heuristics, guidance
in allocating the partitions resulting from the decomposition, and guidance In defining
Ada support tasks, Ada task interfaces, and the packaging of concurrent processes.

7.2.3 Structural Model. A structural model is a method for specifying and implementing
software system functionality. It involves partitioning of problems, coordination between
components, evaluation of the structural model and the system to be built, and
application of the structural model. Partitioning is the decomposition of large problems
into smaller sub problems. The sum of the solutions to the sub problems represent the
overall problem solution. Coordination consists of communication (sharing of
computations between structural elements) and activation (cooperation between
structural elements). Evaluation is performed on the structural model to determine how
well it represents the system to be built, and on the system to determine if it will satisfy
the required functionality and intended qualities. Application involves the explicit and
rigorously enforced use of the structural model to achieve consistency throughout the
system development.
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At the 1992 Industry/Interservice Training Systems and Education Conference
(IIITSEC), the Software Engineering Institute of Carnegie Mellon University presented a
paper, sponsored by the Department of Defense, on structural models for real-time
simulation. The paper is a precursor to an engineering guidebook to be commissioned
in 1993, which will provide details on successful structural models and associated
development methods. In the future, the Air Force will expect bidders to describe the
proposed structural model(s) to be used on a project, demonstrate that the model(s) is
complete with respect to required functionality and intended qualities, and how the
model(s) will be applied consistently across the project.
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8. ACRONYMS

--
ADARTS Ada-based Design Approach for Real-Time Systems
AFB Air Force Base
AMD Advanced Micro Devices
AMIC Automated Module Interface Compiler

BIU Bus Interface Unit

CDR Critical Design Review
CPU Central Processing Unit
CSC Computer Software Component
CSCI Computer Software Configuration Item
CSU Computer Software Unit

DIS Distributed Interactive Simulation
DSSA Domain Specific Segment Architecture

FAA Federal Aviation Administration
FDDI Fiber Distributed Data Interface

GF Growth Factor
GUI Graphical User Interface

HSI Hardware Software Integration

IDD Interface Design Document
IEEE Institute of Electrical and Electronics Engineers
IOS Instructor/Operator Station
IP Internet Protocol
IRS Interface Requirements Specification
ISO/OSI International Organization for Standards/Open Systems

Interconnection
ISWG Interface Standard Working Group

LLC Logical Unk Control

MAC Media Access Control
MFb Multifunction Display
ML Maximum Length
Mod Sim Modular Simulator
MSS Modular Simulator System
MTU Maximum Transfer Unit

OS Operating System

0 D495-10440-1 80



PDR Preliminary Design Review
PDU Protocol Data Unit
PHY Physical layer
Pl Protocol Header Length
PMD Physical Media Dependent layer

RAM Random Access Memory

SIMNET Simulation Network
SMT Station Management
SPC Software Productivity Consortium
SSS System/Segment Specification
S&TS Simulation and Training Systems

TCP Transmission Control Protocol
TO Technical Order

UDP Universal Datagram Protocol
USAF United States Air Force
UTSS Universal Threat Simulation System

VME Versa Module European
VNET Virtual Network

WST Weapon System Trainer

C Xpress Transfer Protocol
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